#1 Data Analytics Program in India
₹2,499₹1,499Enroll Now
6 min read

Data Cleaning in Tableau

Techniques for cleaning and preparing data in Tableau

Why Clean Data?

Dirty data = Wrong results. Always clean your data first!

Common Data Problems

  • Missing values
  • Wrong data types
  • Duplicate rows
  • Inconsistent names (NY vs New York)
  • Extra spaces

Cleaning in Data Source Tab

1. Rename Columns

  • Right-click column header
  • Select "Rename"
  • Type new name

2. Change Data Types

  • Click data type icon
  • Select correct type

3. Hide Unused Columns

  • Right-click column
  • Select "Hide"

4. Split Columns

For "John Smith" to "John" and "Smith":

  • Right-click column
  • Select "Split"

Using Data Interpreter

Tableau can auto-clean Excel files:

  1. Connect to Excel
  2. Check "Use Data Interpreter"
  3. Tableau removes headers, footers, etc.

Filtering Bad Data

Remove unwanted rows:

  1. Go to Data Source tab
  2. Click "Add" under Filters
  3. Set your filter conditions

Handling Nulls

Null = Missing value

Options:

  • Filter out nulls
  • Replace with 0
  • Replace with average

To replace nulls:

  1. Create calculated field
  2. Use: IFNULL([Field], 0)

Fixing Inconsistent Names

"USA", "U.S.A", "United States" should be same:

  1. Right-click the field
  2. Select "Aliases"
  3. Map different names to one value

Pivot Data

Convert columns to rows:

  1. Select columns to pivot
  2. Right-click
  3. Select "Pivot"

Good for:

  • Months as columns → Months as rows
  • Years as columns → Years as rows

Quick Cleaning Checklist

  • Check data types
  • Remove duplicates
  • Handle missing values
  • Fix inconsistent names
  • Remove unnecessary columns

Summary

Clean data before analyzing. Use Data Source tab for renaming, filtering, and fixing issues!