4 min read min read
Detecting Missing Data
Learn to find missing values in your data
Detecting Missing Data
What is Missing Data?
Missing data means empty cells in your table. In pandas, missing values show as NaN (Not a Number).
Real data often has missing values because:
- Someone forgot to fill a form
- A sensor stopped working
- Data was lost during transfer
How to Check for Missing Values
code.py
import pandas as pd
import numpy as np
df = pd.DataFrame({
'Name': ['John', 'Sarah', None, 'Mike'],
'Age': [25, None, 30, 28],
'City': ['NYC', 'LA', 'Chicago', None]
})
print(df)Output:
Name Age City
0 John 25.0 NYC
1 Sarah NaN LA
2 None 30.0 Chicago
3 Mike 28.0 None
Check Each Cell: isna()
code.py
print(df.isna())Output:
Name Age City
0 False False False
1 False True False
2 True False False
3 False False True
True = missing, False = has value
Count Missing Values
code.py
# Missing per column
print(df.isna().sum())Output:
Name 1
Age 1
City 1
dtype: int64
Each column has 1 missing value.
Total Missing Values
code.py
total_missing = df.isna().sum().sum()
print(f"Total missing: {total_missing}")Output: Total missing: 3
Percentage of Missing
code.py
pct_missing = (df.isna().sum() / len(df)) * 100
print(pct_missing)Output:
Name 25.0
Age 25.0
City 25.0
dtype: float64
25% of each column is missing.
Quick Summary
code.py
# All info at once
print(df.info())This shows "non-null count" for each column.
Find Rows with Missing Values
code.py
# Rows that have ANY missing value
rows_with_missing = df[df.isna().any(axis=1)]
print(rows_with_missing)Key Points
- NaN = missing value in pandas
- isna() or isnull() checks for missing (both work same)
- isna().sum() counts missing per column
- info() shows quick summary of data
What's Next?
Now you can find missing data. Next, learn how to remove rows or columns with missing values.