5 min read min read
Plotly Express Basics
Learn the quick way to create Plotly charts
Plotly Express Basics
What is Plotly Express?
Plotly Express (px) is the easy way to use Plotly. One line = one chart.
Import
code.py
import plotly.express as px
import pandas as pdLine Chart
code.py
df = pd.DataFrame({
'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
'Sales': [100, 120, 115, 140, 160]
})
fig = px.line(df, x='Month', y='Sales', title='Monthly Sales')
fig.show()Bar Chart
code.py
fig = px.bar(df, x='Month', y='Sales', title='Sales by Month')
fig.show()Scatter Plot
code.py
df = pd.DataFrame({
'Age': [25, 30, 35, 40, 45],
'Salary': [40000, 50000, 60000, 70000, 80000]
})
fig = px.scatter(df, x='Age', y='Salary', title='Age vs Salary')
fig.show()Color by Category
code.py
df = pd.DataFrame({
'Age': [25, 30, 35, 40, 45, 50],
'Salary': [40000, 50000, 60000, 70000, 80000, 90000],
'Department': ['Sales', 'IT', 'Sales', 'IT', 'HR', 'HR']
})
fig = px.scatter(df, x='Age', y='Salary', color='Department')
fig.show()Each department gets a different color!
Size by Value
code.py
df['Experience'] = [2, 5, 8, 12, 15, 20]
fig = px.scatter(df, x='Age', y='Salary',
color='Department', size='Experience')
fig.show()Histogram
code.py
import numpy as np
data = np.random.normal(50, 10, 500)
fig = px.histogram(x=data, nbins=30, title='Distribution')
fig.show()Box Plot
code.py
df = pd.DataFrame({
'Department': ['Sales']*20 + ['IT']*20,
'Salary': list(range(40000, 60000, 1000)) + list(range(60000, 80000, 1000))
})
fig = px.box(df, x='Department', y='Salary')
fig.show()Pie Chart
code.py
df = pd.DataFrame({
'Category': ['A', 'B', 'C', 'D'],
'Value': [30, 25, 25, 20]
})
fig = px.pie(df, values='Value', names='Category', title='Distribution')
fig.show()Common Parameters
| Parameter | What it does |
|---|---|
| x | X-axis column |
| y | Y-axis column |
| color | Color by column |
| size | Size by column |
| title | Chart title |
| labels | Rename axes |
Rename Axis Labels
code.py
fig = px.scatter(df, x='Age', y='Salary',
labels={'Age': 'Employee Age', 'Salary': 'Annual Salary'})
fig.show()Key Points
- px.line() for trends
- px.bar() for comparisons
- px.scatter() for relationships
- px.histogram() for distributions
- px.box() for spread
- px.pie() for proportions
- Use color and size for extra info
What's Next?
Learn to create interactive scatter plots with more features.